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Abstract

In the present work, the heat transfer performance of optimized dissipators with longitudinal ®ns of asymmetrical cross section is

investigated and compared with that of optimized dissipators with symmetrical ®ns. In particular, the problem of optimizing the

shape and the spacing of the ®ns of a thermal dissipator cooled by a ¯uid in laminar ¯ow is studied by assigning two di�erent

polynomial lateral pro®les to the ®ns. A ®nite element model is proposed to determine velocity and temperature distributions and is

employed in a genetic algorithm to ®nd the dissipator geometries which make the heat transfer coe�cient as high as possible under

di�erent conditions. Some examples of optimized geometries are ®nally shown and discussed. Ó 1999 Elsevier Science Inc. All

rights reserved.

1. Introduction

In many engineering applications, ®nned dissipators are
commonly used to promote high heat ¯uxes from small com-
ponents having a limited heat transfer surface. During the last
few years, the need to reduce the volume and the weight of
thermal dissipators has become even more important. For new
applications, such as in the electronic industry (Bar-Cohen and
Kraus, 1990) or in the compact heat exchanger ®eld (Kays and
London, 1984), even smaller and lighter dissipators have been,
in fact, required. Therefore, the problem of optimizing the
geometry of ®nned dissipators in order to increase the heat
transfer e�ectiveness and reduce the dimensions and the weight
has been studied by many researchers.

To maximize the heat ¯ux removed through ®nned sur-
faces, a variety of ®n pro®les has been studied since the 1920s
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Notation

a ®n height (m)
b ®n basement thickness (m)
cp coolant speci®c heat (J/kg K)
d distance between the ®n base and the opposite ¯at

wall (m)
e width of the portion of conduit section (m)
Ec compared e�ectiveness
f1, f2 pro®le functions (m)
h global heat transfer coe�cient (W/m2 K)
hr global heat transfer coe�cient of a reference ¯at

wall conduit (W/m2 K)
kc thermal conductivity of the coolant (W/m K)
MA surface averaging matrix (m2)
MM momentum transfer matrix
MH heat transfer matrix
n polynomial order
Nue equivalent Nusselt number
p generalized pressure (N/m2)
q00 heat ¯ux per unit of surface uniformly imposed

on the ¯at side of the ®nned plate (W/m2)
Tb bulk temperature of the coolant (K)
Tc temperature of the coolant (K)
Tf temperature of the ®nned plate (K)
Tmax maximum temperature of the ®nned plate (K)
u coolant velocity (m/s)
wt total coolant volume ¯ow rate (m3/s)
x longitudinal coordinate (m)
y coordinate parallel to ®n height (m)
z coordinate orthogonal to ®n height (m)

Greek
a normalized height of the ®ns, a=d
b normalized thickness of the ®nned plate base, b=d
c ratio of ®nned plate to coolant thermal conduc-

tivity
� normalized width of the portion of conduit

section, e=d
f normalized hydraulic resistance, de®ned by

Eq. (25)
g normalized coordinate parallel to ®n height, y=d
l dynamic viscosity (Pa s)
q coolant density (kg/m3)
r ®nned plate normalized average thickness, de-

®ned by Eq. (30)
/1, /2 normalized pro®le functions; f1=d, f2=d
/1i, /2i ®n pro®le describing parameters
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(Schmidt, 1926; Du�n, 1959; Maday, 1974; Tsukamoto and
Seguchi, 1984; Snider and Kraus, 1987; Chung and Iyer,
1993). Parabolic, triangular, undulated optimized pro®les
have been proposed. For longitudinal ®ns, under particular
conditions, some of them have been demonstrated to have a
signi®cantly improved e�ectiveness (Snider et al., 1990; Spiga
and Fabbri, 1994; Fabbri and Lorenzini, 1995; Fabbri, 1997).
Nevertheless, for many situations, an ultimate solution has
not yet been found to the problem of optimizing the pro®les
of the ®ns.

For ®nned dissipators cooled by forced convection, the heat
transfer e�ectiveness depends on di�erent factors, which often
are interdependent. The most important are the local convec-
tive heat transfer coe�cient, the extension of the heat transfer
surface between the solid and the coolant ¯uid and the ®n
conductance. The local convective heat transfer coe�cient
depends on the velocity distribution of the coolant ¯uid in-
duced by the ®n spacing and shape, which also a�ect the heat
transfer surface and the ®n conductance. Moreover, to increase
the heat transfer surface, the extension of the ®n must be
augmented. Therefore, if the ®n weight is constrained, the ®n
thickness must be reduced. Nevertheless, for a given value of
the thermal conductivity of the ®n material, it is necessary to
reduce the height and to increase the thickness of the ®ns in
order to enhance the conductance.

The problem of optimizing the geometry of a dissipator
with longitudinal ®ns having a symmetrical cross section under
laminar convection conditions has been studied in a previous
work (Fabbri, 1998). In this case, we demonstrated that the
local heat transfer coe�cient on the ®nned surface is very
sensitive to the ¯uid dynamic conditions determined by the ®n
pro®le. As a result, by optimizing the ®n pro®le, the im-
provements obtained in the heat transfer e�ectiveness of the
dissipators depend much more on the increase in the local heat
transfer coe�cient than on the ®n conductance enhancement
or surface extension.

Longitudinal ®ns having symmetrical lateral pro®les have
been investigated, as in our previous work, in most of
the studies performed on the optimization of the ®n shape. The
symmetry of the lateral pro®les simpli®es the treatment of
the problem. Boundary conditions, in fact, can be more easily
imposed. Moreover, a less extended domain can be studied,
that is particularly convenient if the thermal state of the system
is determined in a numerical way. Nevertheless, in many
practical applications, the adoption of symmetrical pro®les
does not provide the best solution in terms of heat transfer
e�ectiveness. This is particularly true when binding constraints
are imposed on the dissipator structural integrity and weight.
Therefore, in the present work we investigate the improve-
ments which can be obtained under laminar ¯ow conditions in
the heat transfer e�ectiveness of optimized ®nned dissipators
by assigning asymmetrical lateral pro®les to the ®ns.

2. The mathematical model

Let us consider a coolant ¯uid which passes in laminar ¯ow
through a conduit delimited by a ¯at insulated surface and a
®nned plate as in Fig. 1(a). All ®ns are identical and have an
asymmetrical cross section. Moreover, a heat ¯ux q00 is uni-
formly imposed on the ¯at side of the ®nned plate.

Let us choose an orthogonal coordinate system, where the x
axis is directed in the coolant ¯ow direction and the y axis is
orthogonal to the ¯at conduit wall. Moreover, let X1 and X2 be
the lines which pass through the middle points of two adjacent
®ns, e the distance in z direction between X1 and X2, a the ®n
height in the y direction, b the base thickness, d the distance
between the base and the ¯at insulated surface, and f1�y� and

f2�y� arbitrary functions which describe the two lateral ®n
pro®les.

Since the dynamic and thermal state of the system is peri-
odic in the z direction, the heat transfer performance can be
investigated by limiting the analysis to the portion of the
conduit cross section delimited by lines X1 and X2. The same
idealizations invoked by Fabbri (1998) are assumed:

± the system is in steady state;
± velocity and temperature pro®les are completely developed;
± ¯uid and solid properties are uniform;
± viscous dissipation within the ¯uid is negligible;
± natural convection is negligible in regard to the forced

convection.
Under these conditions the coolant ¯ow is described by the
following equation:

o2u
oy2
� o2u

oz2
� 1

l
op
ox
; �1�

p being the generalized pressure, which includes the gravitation
potential, and l the dynamic viscosity. For the case where the
®ns are asymmetrical, Eq. (1) must be integrated by imposing
the following boundary conditions: the velocity is zero on the
contact surface between the ¯uid and the ®nned plate and

u�y;x1�y�� � u�y;x2�y�� 8 a6 y6 d; �2�
ou
oN

� �
�y;x1�y��

� ou
oN

� �
�y;x2�y��

8 a6 y6 d; �3�

where functions x1�y� and x2�y� provide the value of the
angular coordinate in X1 and X2, respectively, and N is the
coordinate which is normal to the two lines.

Fig. 1. Geometry of the heat removing system: (a) view of the ®nned

conduit, (b) portion of the transversal section subdivided in ®nite

elements.
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In the coolant, the temperature must satisfy the following
energy balance equation:

o2Tc

oy2
� o2Tc

oz2
� qcp

kc

u
oTc

ox
; �4�

q; cp and kc being the coolant density, speci®c heat and
thermal conductivity, respectively. In the ®nned plate, the
temperature must instead satisfy the Laplace equation:

o2Tf

oy2
� o2Tf

oz2
� 0: �5�

For the case where ®ns are asymmetrical, Eqs. (4) and (5) must
be integrated by imposing the following boundary conditions:
the temperature and the heat ¯ux in normal direction are
identical in the solid and in the ¯uid on the contact surface, the
heat ¯ux in the normal direction is zero on the insulated ¯at
surface and is equal to q00 on the ¯at side of the ®nned plate,
and

Tc�y;x1�y�� � Tc�y;x2�y�� 8 a6 y6 d; �6�
Tf �y;x1�y�� � Tf �y;x2�y�� 8 ÿ b6 y6 a; �7�

oTc

oN

� �
�y;x1�y��

� oTc

oN

� �
�y;x2�y��

8 a6 y6 d; �8�

oTf

oN

� �
�y;x1�y��

� oTf

oN

� �
�y;x2�y��

8 ÿ b6 y6 a: �9�

It also is necessary to impose a temperature value in one point
of the studied domain.

Similarly to the case of symmetrical ®ns (Fabbri, 1998), due
to the complexity of the problem it is convenient to numeri-
cally determine velocity and temperature distributions resort-
ing, for example, to a ®nite element method. The same shape
of that case can be assigned to the elements (see Fig. 1(b)) and
the same interpolation can be used to approximate the velocity
and the temperature in each element.

Let us suppose, in the ®rst instance, that condition (2) is not
necessarily veri®ed and the momentum ¯ux through contours
X1 and X2 is zero. In this way, the ®nite element ¯uid dynamic
problem becomes similar to that studied in Fabbri (1998).
Therefore, from a balance of viscous and pressure forces acting
on each node, the following system of equations is obtained:

MM � U � 1

l
dp
dx

A; �10�
U and A being vectors containing the velocity of each node and
the portion of the cross section associated to each node,
respectively, and MM a momentum transfer matrix.

At this stage, to impose the periodicity of the velocity, the
system of equations (10) can be reduced by attributing the
contributions of the nodes on a contour line, for example X2,
to those on the other. In particular, to verify conditions (2) and
(3), the matrix MM and the vectors U and A must be modi®ed
in the following way:

Û � U1

U3

� �
; �11�

Â � A1 � A2

A3

� �
; �12�

M̂M � MM11 �MM12 �MM21 MM13 �MM23

MM31 �MM32 MM33

� �
; �13�

index 1 and 2 referring to the nodes on the lines X1 and X2, and
index 3 to all other nodes. Moreover, the vectors Û 1 Â1 and the

matrix M̂M can be partitioned by distinguishing nodes where
velocity is known:

M̂Muu � Û u � 1

l
dp
dx

Âu; �14�
index u referring to the nodes where the velocity is unknown.
Since the known velocities are zero, their contribution has not
been taken into account. For the case of asymmetrical ®ns, the
velocity distribution in the cross section is determined by
solving the system of equations (14).

Supposing that conditions (6) and (7) are not necessarily
veri®ed and the heat ¯ux through contours X1 and X2 is zero,
the ®nite element heat transfer problem also becomes similar
to that studied in Fabbri (1998). From an overall energy bal-
ance, the following system of equations is then obtained:

MH � T � N ; �15�

N � q00

kc

2e
wt

MA � U
�

ÿ L
�
; �16�

MH and MA being heat transfer and surface integration ma-
trices, respectively, wt the total volume ¯ow rate through the
portion of the ®nned tube section, and L a vector containing
the perimeter crossed by q00 associated to each node. Vector U
now includes the velocities of the nodes of the solid, which are
zero.

To verify conditions (6)±(9), the matrix MH and the vectors
T and N must now be modi®ed in the following way:

T̂ � T1

T3

� �
; �17�

N̂ � N1 � N2

N3

� �
; �18�

M̂H � MH11 �MH12 �MH21 MH13 �MH23

MH31 �MH32 MH33;

� �
; �19�

index 1, 2 and 3 referring to the same nodes as in Eqs. (13)±
(15). By assigning an arbitrary temperature to a node, distin-
guishing it from the others, whose temperature is unknown,
and consequently partitioning the matrix M̂H and the vectors T̂
and N̂ , the following system is derived:

M̂Huu � T̂ u � N̂ u ÿ M̂Hun � T̂ n; �20�
index n and u referring here to the node to which the arbitrary
temperature has been assigned and to the others, respectively.
After solution of the system of equations (20), the temperature
distribution in the cross section of the conduit with asym-
metrical ®ns is obtained as a function of Tn.

Bulk temperature, global heat transfer, equivalent Nusselt
number, compared e�ectiveness and normalized hydraulic re-
sistance can ®nally be de®ned as in Fabbri (1998) and calcu-
lated as follows:

Tb � 1

wt

X
i

X
k

mAikuktk ; �21�

h � q00

Tmax ÿ Tb

; �22�

Nue � h2d
kc

; �23�

Ec � q00

q00r
� h

2:692kc

���
f3
p
=d
; �24�

f � �ÿdp=dx�
�wt=2e�

12 l
d3

�
�25�
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where mAik , uk , and tk are the elements of MA, U , and T , re-
spectively, the summation index i is extended to all nodes of
the coolant, Tmax is the maximum temperature obviously oc-
curring on the surface where q00 is imposed, and q00r is the heat
¯ux dissipated through a side of a reference ¯at wall conduit
(Shah and London, 1974) with the same hydraulic resistance as
the ®nned conduit. Due to the linearity of the system, coe�-
cient h does not depend on the value arbitrarily assigned to Tn.

3. Geometry optimization

In this work the geometry of the system described in Sec-
tion 2 will be optimized under di�erent conditions, in order to
maximize the equivalent Nusselt number or the compared ef-
fectiveness. The highest heat ¯ux is dissipated for given dis-
tance d between the ®n basement and the insulated ¯at surface
in the ®rst case, and for given hydraulic resistance in the sec-
ond one. The condition of constrained ®nned plate volume will
also be taken into consideration.

Parameters a, b, d, e and the pro®le functions f1�y� and
f2�y� describe the geometry of the ®nned conduit. In the
studied domain, z coordinate is equal to f1�y� on a lateral ®n
pro®le and to 2eÿ f2�y� on the other. Dimensionless variables
can be obtained by normalizing all geometrical parameters by
d:

a � a
d
; b � b

d
; � � e

d
; /1�g� �

f1�gd�
d

;

/2�g� �
f2�gd�

d
; g � y

d
: �26�

To the pro®le functions /1�g� and /2�g� a polynomial form as
in Fabbri (1998) can be assigned. Moreover, the values as-
sumed by the two functions in n� 1 points can be chosen as
the ®n pro®le describing parameters, n being the polynomial
order:

/1i � /1

i
n

a

� �
; /2i � /2

i
n
a

� �
8 i � 0; 1; . . . ; n: �27�

The dynamic and thermal behavior of the ®nned conduit does
not obviously depend on the origin of the coordinate system.
Therefore, this latter can be translated in the z direction in
order to let /10 always be equal to /20. This allows the number
of the describing parameters to be reduced by one unit.
Moreover, the same thermal performance is presented by two
®nned tubes whose cross section is specular. By imposing, for
example, that the derivative of /1 is not negative, the number
of possible ®nned tube geometries can then be halved.

To ®nd the combinations of parameters a, b, � and /i which
allow the best heat transfer performance to be obtained even in
case the dissipator volume is constrained, a genetic algorithm
(Queipo et al., 1994; Fabbri, 1997) similar to that utilized in
Fabbri (1998) can be successfully employed. The following
variations must be applied.

Let /3�g� be the ®n thickness given by the sum of /1�g� and
/2�g�. This parameter must be no less than a lower limit value
hmin to ensure the structural integrity of the ®n, and no more
than an upper limit value hmax to allow a uniform distribution
of the coolant in the space between the ®ns. If, after parameter
reproduction, the ®n thickness is found to exceed these limits,
parameters /1i must be changed in the following way

/3i �
/3 max ÿ /3 maxÿhmin

/3 maxÿ/3 min
�/3 max ÿ /3�a i=n�� if /3 min < hmin

/3 min � hmaxÿ/3 min

/3 maxÿ/3 min
�/3�a i=n� ÿ /3 min� if /3 max > hmax

(
8 i � 0; 1; . . . ; n; �28�

/̂1i � /1i � /3i ÿ /3�a i=n�; �29�

where /3 min and /3 max are the minimum and the maximum
values which /3�g� was found to assume for g varying between

0 and a, and /̂1i being the new parameter values.

4. Results

Some geometry optimizations have been carried out in or-
der to ®nd the ®nned plate geometries which maximize the
equivalent Nusselt number or the compared e�ectiveness.
Performances of asymmetrical optimized ®ns have been com-
pared with those of symmetrical ones found with the proce-
dure described in Fabbri (1998).

To determine velocity and temperature distributions in
®nned conduits with asymmetrical ®ns, a grid of 32�52 ele-
ments (33�53 knots) was employed in the ®nite element model.
For the model predictions, the same grid dependence as in
Fabbri (1998) has been observed for the same domains. In
particular, a grid of 40�52 elements produced in Nue and Ec

alterations of less than 0.1% and 0.2%, respectively and a grid
of 32�65 elements resulted in alterations of less than 0.05%
and 0.1%, respectively. In the genetic algorithm, a has been
constrained to 0.75 and the maximum displacement in z di-
rection between the middle points of the ®n has been imposed
to be no greater than 2�.

Optimizations of the geometries of conduits with asym-
metrical ®ns have been carried out for the same cases investi-
gated in Fabbri (1998) (for a� 0.75). In every case,
symmetrical ®ns have been found as performing the best, both
in terms of Nue and Ec. On the contrary, better performances
have been presented by asymmetrical ®ns in some cases where
� was constrained. In particular, it has been observed that,
under di�erent conditions, if the ®ns are constrained to be
spaced far apart compared to those of the optimum geometry
obtained by imposing no constraint on �, then optimum pro-
®les resulted as being asymmetrical.

This result is particularly interesting since, in many prac-
tical applications, the ®n spacing must be augmented for dif-
ferent reasons. Dissipating plates with symmetrical or
asymmetrical ®ns can be produced by extrusion of melted
metal through appropriate dies or by utilizing composite
moulds. The cost of producing dies or moulds, which must be
frequently substituted, depends on the number of ®ns and the
complexity of the pro®les. Therefore, ®ns spaced far a part are
less expensive to be produced. Moreover, if the dissipator
volume is constrained, sparse ®n can be thicker and more
resistant.

In Fig. 2 optimized geometries with symmetrical (a and c)
and asymmetrical ®ns obtained by maximizing Nue (a and b)
and Ec (c and d) are shown for n ranging from 0 to 4, � con-
strained to 0.5 a, and c equal to 300. The value chosen for � is
higher than those of the optimum geometries found in Fabbri
(1998). It is evident that, under the considered conditions,
higher order polynomial pro®les still perform better. More-
over, performances of the asymmetrical ®ns are signi®cantly
better both in terms of equivalent Nusselt number and com-
pared e�ectiveness, mainly when n is high. Lastly, asymmet-
rical ®ns require a smaller solid volume, as indicated by the
average normalized thickness of the ®nned plate r:

r � b� 1

2�

Za
0

�/1 � /2�dg: �30�

It must be noticed that the equivalent Nusselt numbers of ®rst
and second order asymmetrical ®ns are very close to those of
third and fourth order symmetrical ®ns, respectively. There-
fore, in terms of Nue, optimum performances comparable with
those of symmetrical ®ns can be obtained with simpler
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Fig. 3. Velocity distributions in the transversal section of the geometries of Fig. 2 with n equal to 4. Curves are drawn every 10% of the maximum

velocity.

Fig. 2. Finned conduit geometries with symmetrical (a and c) and asymmetrical ®ns obtained by maximizing Nue (a and b) and Ec (c and d) for �

constrained to 0.5a and c equal to 300.
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Fig. 4. Temperature distributions in the transversal section of the geometries of Fig. 2 with n equal to 4. Curves are drawn every 10% of the di�erence

between the maximum and minimum temperature.

Fig. 5. Finned conduit geometries with symmetrical (a and c) and asymmetrical ®ns obtained by maximizing Nue (a and b) and Ec (c and d) for c
equal to 300, � constrained to 0.5a, r to 0.3, and b to be more than 0.05.
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asymmetrical pro®les. Moreover, in terms of Ec, performances
of ®rst and second order asymmetrical ®ns are considerably
better compared with those of third and fourth order sym-
metrical ®ns, respectively. This is particularly interesting, since
the complexity of the pro®les a�ects the production costs as
observed above.

Velocity and temperature distributions in the optimized
conduit of Fig. 2 with fourth order pro®les ®ns are shown in
Figs. 3 and 4, respectively. Temperature gradients near the
surface of symmetrical and asymmetrical ®ns are comparable.
Therefore, the better performances of asymmetrical ®ns are
mainly due to the larger extension of the heat transfer surface
between solid and ¯uid and are not so much a�ected by the
violation of those idealizations, introduced in the mathemati-
cal model, which in practical applications results in lowering
the thermal gradients (Fabbri, 1998; Huang and Shah, 1992).

Since optimum asymmetrical ®ns require a smaller solid
volume it is interesting to compare their performances with
those of symmetrical ®ns for a given amount of material
available for the ®nned plate. It has been demonstrated
(Fabbri, 1998) that, when the solid volume is constrained, the
®n basement can become very thin in the optimized ®nned
plates. On the contrary, in most practical applications, the ®n
basement can not be too thin, in order to ensure the structural
integrity of the dissipator. Therefore, it also is interesting to
constrain the basement thickness b to be no less than a limit
value.

In Fig. 5, optimized geometries obtained for r constrained
to 0:3 and b constrained to be no less than 0.05 are shown. By
reducing the available solid volume, the Nusselt number and
the compared e�ectiveness decrease considerably less for the

asymmetrical ®n optimum geometries than for the symmetrical
one. As a result, the maximum equivalent Nusselt number
obtainable with fourth order asymmetrical pro®les is 36.26%
greater than with fourth order symmetrical pro®les and
96.31% greater than with zero order pro®les. Moreover, in the
compared e�ectiveness, fourth order asymmetrical pro®les
provide a 16.48% increment in comparison with fourth order
symmetrical pro®les and a 47.18% increment in comparison
with zero order pro®les. By reducing the available solid volume
to a lower value (r � 0:15), as it is evident in Fig. 6, the
Nusselt number and the compared e�ectiveness decrease less
for the symmetrical ®n optimum geometries than for the
asymmetrical ones, but the latter still perform the best.

In Fig. 6, the equivalent Nusselt number and compared
e�ectiveness of the optimized geometries obtained for c equal
to 30 are also reported. It is evident that, when the ratio be-
tween the thermal conductivity of the solid and the ¯uid is a
magnitude order lower, optimum asymmetrical ®ns perform
noticeably worse than in the previous cases and just a little
better than optimum symmetrical ®ns.

5. Conclusions

Some optimizations of the geometry of a ®nned dissipator
cooled by laminar ¯ow have been carried out for di�erent
situations by utilizing a ®nite element model in a genetic al-
gorithm. In particular, for longitudinal ®ns with symmetrical
and asymmetrical cross section, optimum lateral pro®les have
been found for given ®n relative height and dissipator volume.
The heat ¯ux dissipated through the ®nned plate in a coolant

Fig. 6. Comparison between the performance of the optimized geometries with symmetrical (dashed line) and asymmetrical (continuous line) ®ns

obtained by maximizing Nue (a) and Ec (b) for � constrained to 0.5 a, c equal to 300 (o, �, �) and 30 (+), r unconstrained (o) and constrained to 0.30

(�, +) and 0.15 (�), and b unconstrained (o) and constrained to be no less than 0.05 (�, �, +).
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¯uid has been maximized with the lowest distance between the
conduit wall or with the lowest hydraulic resistance.

Under particular conditions, noticeable improvements in
the heat transfer have been observed for optimum ®ns with
asymmetrical polynomial lateral pro®les. Referring to the
maximum global heat transfer coe�cient which can be
provided by zero order lateral pro®le ®ns, more than 95%
increments have been obtained with fourth order asymmet-
rical ®ns. Moreover, performances being close to those of
fourth and third order symmetrical pro®les have been ob-
tained with second and ®rst order asymmetrical pro®les,
respectively.

References

Bar-Cohen, A., Kraus, A.D., 1990. Advances in thermal modeling of

electronic components and systems. Ch. 3, ASME Press Series,

New York.

Chung, B.T.F., Iyer, J.R., 1993. Optimum design of longitudinal

rectangular ®ns and cylindrical spines with variable heat transfer

coe�cient. Heat Trans. Engrg. 14 (1), 31±42.

Du�n, R.J., 1959. A variational problem relating to cooling ®ns. J.

Math. Mech. 8, 47±56.

Fabbri, G., Lorenzini, G., 1995. Analisi numerica bidimensionale di

dissipatori a pro®lo sinusoidale. In: Proceedings 13th UIT National

Congress, Bologna, Italy, pp. 491±499.

Fabbri, G., 1997. A genetic algorithm for ®n pro®le optimization. Int.

J. Heat Mass Transfer 40, 2165±2172.

Fabbri, G., 1998. Optimization of heat transfer through ®nned

dissipators cooled by laminar ¯ow. Int. J. Heat Fluid Flow 19,

644±654.

Huang, L.J., Shah, R.K., 1992. Assessment of calculation methods for

e�ciency of straight ®ns of rectangular pro®le. Int. J. Heat Fluid

Flow 13, 282±293.

Kays, W.M., London, A.L., 1984. Compact Heat Exchangers, 3rd ed.,

Ch. 1, McGraw-Hill, New York.

Maday, C.J., 1974. The minimum weight one-dimensional straight ®n.

ASME J. Eng. Ind. 96, 161±165.

Queipo, N., Devarakonda, R., Humphrey, J.A.C., 1994. Genetic

algorithms for thermosciences research: application to the opti-

mized cooling of electronic components. Int. J. Heat Mass Transfer

37, 893±908.

Schmidt, E., 1926. Die W�arme�ubertragung durch Rippen. Ver. Dt.

Ing. 70, 885±951.

Shah, R.K., London, A.L., 1974. Thermal boundary conditions for

laminar duct ¯ow forced convection. ASME J. Heat Transfer 96,

159±165.

Snider, A.D., Kraus, A.D., 1987. The quest for the optimum

longitudinal ®n pro®le. Heat Trans. Engrg. 8 (2), 19±25.

Snider, A.D., Kraus, A.D., Gra�, S., Rodriguez, M., Kusmierczyk,

A.G. 1990. Optimal ®n pro®les. Classical and modern. In:

Proceedings of the 9th Int. Conf. Heat Transfer, vol. 4, pp. 15±19.

Spiga, M., Fabbri, G., 1994. E�cienza di dissipatori a pro®lo

sinusoidale. In: Proceedings 12th UIT National Congress, L'Aqui-

la, Italy, pp. 197±204.

Tsukamoto, Y., Seguchi, Y., 1984. Shape optimization problem for

minimum volume ®n. Heat Transfer Japanese Research 13 (1),

1±19.

G. Fabbri / Int. J. Heat and Fluid Flow 20 (1999) 634±641 641


